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1Introduction

This document presents some control theory and lots of examples of how you may implement it in
MathScript.

This document gives an introduction to the following topics:

e Transfer Functions and Block Diagrams
e State-Space Models

e Time-delay and Pade’ approximations
e Frequency Response

e Frequency Response Analysis

e Stability Analysis

MathScript has lots of built-in functionality for these applications. In each chapter we will give a short
overview to the theory behind, before we dig into the MathScript Examples. Since MathScript is
almost identical to MATLAB, you can use MATLAB instead in most of the examples shown.

1.1 MathScript

MathScript is a high-level, text- based programming language. MathScript includes more than 800
built-in functions and the syntax is similar to MATLAB. You may also create custom-made m-file like
you do in MATLAB.

MathScript is well suited for practical implementations of control theory.

MathScript (LabVIEW MathScript RT Module) is an add-on module to LabVIEW but you don’t need to
know LabVIEW programming in order to use MathScript, because MathScript is a text-based
language similar to MATLAB.

For more information about MathScript, please read the Tutorial “LabVIEW MathScript”
(http://home.hit.no/~hansha/?tutorial=mathscript).

Additional exercises are given in the course “So You Think You Can MathScript”
(http://home.hit.no/~hansha/?lab=mathscript).




2 MathScript Basics

2.1 Introduction

MathScript is a high-level, text- based programming language. MathScript includes more than 800
built-in functions and the syntax is similar to MATLAB. You may also create custom-made m-file like

you do in MATLAB.

MathScript is an add-on module to LabVIEW b
order to use MathScript.

ut you don’t need to know LabVIEW programming in

T3 LabVIEW MathScript

[E=8 I X3
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Untitled Line: 1, Column: 3

For more information about MathScript, please read the Tutorial “LabVIEW MathScript”.

2.2 How do you start

You need to install LabVIEW and the LabVIEW

using MathScript?

MathScript RT Module. When necessary software is

installed, start MathScript by open LabVIEW:
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P! Getting Started E]‘f @

File Operate Tools Help

&2 LabVIEW | =y

Licensed for Professional Yersion

New Latest from ni.com
") Blank VI LabVIEW News (12)
%) Empty Project LabYIEW in Action (15)
h‘;y Real-Time Project Example Programs (5)
) More...

Training Resources (10}

Online Support
Open
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@. C:1...\CDEx AirHeater lvproj

@ M:4...1Student Information System.lvproj Code Sharing
KnowledgeBase
=) MPC Example - Setpaint profile2. vi Request Support
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[] ...e - Air Heater2 - Setpoint profile.vi Getting Started with LabVIEW
El], mpc_pid_air_heater.vi
_ LabVIEW Help
9 Browse...
List of All New Features
Targets Q& Find Examples...
lReaI—Time Project v ‘ [ Go ]

q Find Instrument Drivers...

In the Getting Started window, select Tools -> MathScript Window...:

P! Getting Started
File Operate BGGEEN Help

Measurement & Automation Explorer...
Swinenly Instrumentation >

l Real-Time Mad [ 3
aalnanln

(  MathScript Window. ..

DSC Module >

New IMAQ Vision > Latest from ni.com

2.3 Basic Operations

Variables:

Variables are defined with the assignment operator, “=". MathScript is dynamically typed, meaning
that variables can be assigned without declaring their type, and that their type can change. Values
can come from constants, from computation involving values of other variables, or from the output

of a function.

Example:

Control Theory with MathScript Examples



4 MathScript Basics

>> x = 17

x =

17

>> x = 'hat'

x =

hat

>> x = [3*4, pi/2]

X =
12.0000 1.5708
>> y = 3*sin (x)
y =
-1.6097 3.0000

[End of Example]

Note! MathScript is case sensitive! The variables x and X are not the same.

Note! Unlike many other languages, where the semicolon is used to terminate commands, in
MathScript the semicolon serves to suppress the output of the line that it concludes.

Try the following:

>> a=5

As you see, when you type a semicolon (;) after the command, MathScript will not respond.

It is normal it enter one command in each line, like this:

X
Yy

[0:0.1:17;
sin (x)

But we can also enter more than one command on one line:

x = [0:0.1:1]; y = sin(x)
or:
x = [0:0.1:1], y = sin(x)

2.4 Vectors and Matrices

Vectors:

Control Theory with MathScript Examples
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Given the following vector:

4

This can be implemented in MathScript like this:

x =[1 2 3]

The “colon notation” is very useful for creating vectors:

Starting value

x=[xi:dx:xf]

t

—l 17 Final value

Increment

Example:

This example shows how to use the colon notation creating a vector and do some calculations.

ans =
0
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

>>x=[0:0.1:1]";y=x."sin(x);

>>[x y] T

0
0.0100
0.0397
0.0887
0.1558
0.2397
0.3388
0.4510
0.5739
0.7050
0.8415

Starting value Final value

Increment |

Vg

x=[0:0.1:1]'

Matrices:

Given the following matrix:

Control Theory with MathScript Examples
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MathScript Code:

A=[0 1; -2 -3]

Given the following matrix:

MathScript Code:

C=[-1 2 0; 4 10 -2; 1 0 6]

How to get a subset of a matrix:

- Find the value in the second row and the third column of matrix C:

Cc(2,3)

This gives:

ans =
-2

- Find the second row of matrix C:

C(2,:)

This gives:

ans =

- Find the third column of matrix C:

C(:,3)

This gives:
ans = 0
-2

6

Control Theory with MathScript Examples



7 MathScript Basics

Deleting Rows and Columns:

You can delete rows and columns from a matrix using just a pair of square brackets [].

Example:
Given
A::[jg ;;]

We define the matrix A:

>>A=[0 1; -2 -3];

To delete the second column of a matrix A, we use:

>>A(:,2) = []
A =

0

=2

[End of Example]

2.5 Linear Algebra

Linear algebra is a branch of mathematics concerned with the study of matrices, vectors, vector
spaces (also called linear spaces), linear maps (also called linear transformations), and systems of
linear equations.

MathScript are well suited for Linear Algebra. Here are some useful functions for Linear Algebra in
MathScript:

Function Description Example
rank Find the rank of a matrix. Provides an estimate of the number of iiA:[}l( (i; 3 4]
. ran
linearly independent rows or columns of a matrix A.
det Find the determinant of a square matrix >>R=[1 2; 3 4]
>>det (A)
inv Find the inverse of a square matrix >>A=[1 25 3 4]
>>inv (A)
i Find the eigenvalues of a square matrix >>A=[1 2; 3 4]
EIg € elge u a >>eig (A)
r n array or matrix with only ones >>omnes (2)
ones Creates an array o Y >>ones (2,1)
eye Creates an identity matrix >>eye (2)
i Find the diagonal elements in a matrix >>A=[1 2; 3 4]
diag d the diagonal e >>diag (A)

Type “help matfun” (Matrix functions - numerical linear algebra) in the Command Window for more
information, or type “help elmat” (Elementary matrices and matrix manipulation).

You may also type “help <functionname>" for help about a specific function.

Control Theory with MathScript Examples



8 MathScript Basics

2.6 Plotting

MathScript has lots of functionality for Plotting. The simplest and most used is the plot function.

Example:

>>t=[0:0.1:107;
>>y=cos (t) ;
>>plot(t,y)

This gives the following plot:

B Plot 1 [DE]

File Items Tools Help

Graph
1

0,8-
0,6-
0,4-

0,2-

-0,2-
-0,4-
-0,6-

-0,8-

[End of Example]

MathScript has lots of built-in functions for plotting:

Function Description Example
plot Generates a plot. plot(y) plots the columns of y against the ii - }EOig:Ol 1115
indexes of the columns. Splot (X, ¥)
. C t fi i >>figure
figure reate a new figure window igure(l)
subplot Create subplots in a Figure. subplot(m,n,p) or subplot(mnp), >>subplot(2,2,1)

breaks the Figure window into an m-by-n matrix of small axes,
selects the p-th axes for the current plot. The axes are counted
along the top row of the Figure window, then the second row,

etc.

grid Creates grid lines in a plot. iigﬂg .
“grid on” adds major grid lines to the current plot. S>grid off
“grid off” removes major and minor grid lines from the current
plot.

axis Control axis scaling and appearance. “axis([xmin xmax ymin ::‘:: (:gi“ xmax ymin ymax])
ymax])” sets the limits for the x- and y-axis of the current axes. Sserds em

title Add title to current plot >>title('this is a title')
title('string')

xlabel Add xlabel to current plot >> xlabel ('time')

Control Theory with MathScript Examples
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xlabel('string')

ylabel Add ylabel to current plot >> ylabel ('temperature’)
ylabel('string')
legend Creates a legend in the corner (or at a specified position) of the >> legend('temperature')
plot
hold Freezes the current plot, so that additional plots can be overlaid ~ >>hold on
>>hold off
Example:

Here we see some examples of how to use the different plot functions:

0.8

0.6

>>x=[0:0.1:1]"
>>y=X."sin(x);

>>plot(x,y)

>>title('Plot of x sin(x) vs x ')
>>xlabel('x')

>>ylabel('y")

>>grid on

(a)

Plot of X sin(x) vs X «——————— Title

<+«— Grid

0.4

0

y label

0.2 0.4 0.6 0.8 1
X +—i

x label

>> x=[0:0.1:1];
>> y1=x."sin(x); y2=sin(x);
>> plot(x,y1,"--',x,y2,"-.") €=

Dashed line for y1
Dashed-dot line for y2

>> text(0.1,0.85,'y_1 = x sin(x) ---')
>> text(0.1,0.80,'y_2 = sin(x) .\ _.\_")
>> xlabel('x"), ylabel('y_1 and y_2'), grid on

(a)

0.9
y| = xsin(x) == _
0.8 S
Yy = sin(x)  —.— /_/'//’
0.7 i 4
/ v
0.6 : : 7 7
AN Text indicating lines A /
205 g e r
f—=: /'/ 1
= 0.4 g /,’
7 7’
0.3 7 ,//
0.2 L <
./‘/ /’/’
0.1 /_/ ’,/
0 7 __,¢’
0 01 02 03 04 05 06 07 08 09 1

X

[Figure: R. C. Dorf and R. H. Bishop, Modern Control Systems, Eleventh Edition: Pearson Prentice Hall]

[End of Example]

2.6.1

Subplots

The subplot command enables you to display multiple plots in the same window or print them on the

same piece of paper. Typing “subplot(m,n,p)” partitions the figure window into an m-by-n matrix of

small subplots and selects the pth subplot for the current plot. The plots are numbered along the first

row of the figure window, then the second row, and so on.

Control Theory with MathScript Examples
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The syntax is as follows:

subplot (m,n, p)

Example:

x=0:0.1:2*pi;

subplot (2,1,1)
y=sin(x);
plot (x,y)

subplot (2,1,2)
Z=CO0S (X) ;
plot (x, z)

This gives the following plot:

Control Theory with MathScript Examples
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B Plot 1

File Items Tools Help

Graph 1

EBX

il

0,5-

Graph 2

55

6,5

1-

0,5-

0-

-0,5-

-1-

55

6,5

[End of Example]
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12 MathScript Basics

2.7 User-Defined Functions in MathScript

MathScript includes more than 800 built-in functions that you can use but sometimes you need to
create your own functions.

To define your own function in MathScript, use the following syntax:

function outputs = function name (inputs)
% documentation

The figure below illustrates how to create and use functions in MathScript:

B LabVIEW MathScript

Save your function as a .m file

N Edit View Operate Tools Window Help

ew VT Crk+ ‘ Varial cript | History

MNew... A

Open... Ctrl+0 =] L3 C:\tmpiMathScriptiadd.m

Close Chrl+w t'Eh't] ‘i(l ) l

unction total = add(x,y’ -~
Close A % this function add 2 numbers (D Create your function in
total = x+y; L .
Save Ctrl+s § the Script window
Save As... :
Open MathScript Add Search Folder

New Script Editor Properties for your Code

MNew Project

Open Project... 3

I g‘,‘-‘?"Y - & Math "ty
e ‘
Recent Projects “'Tfﬁ;ﬂ:}(’:“:‘" Bu
) : AT
Recent Files » \
Exit
Add your folder where your
code is located here
‘Warking drectory
Cltmophsaret
oty
Command Window
add(3,5)| _
(msen) =)
Test your function in the
Command window = 32

[9.0f3 ‘ Tde [Line: 1, Column: 18

2.8 Scripts

A script is a sequence of MathScript commands that you want to perform to accomplish a task. When
you have created the script you may save it as a m-file for later use.

Control Theory with MathScript Examples
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© LabVIEW MathScript - 3]

File Edit View Operate Tools Window Help
Output Window Variables | Script | Histor
1 < ) b o £l N ‘ L4 ‘

E ||| ER)E) M| Work|Tutarials|LabIEW|LabVIEW Mathscript|Code|ExamplesiMathscript| |
t=[0:0.1:10]; ~
y=cos(t); b |

>>mean(x) plot(t.y) d

ans =

4.8571
Run the Script
2R ) Type commands in your

J— script here

9
P iPlot
File Items Tools Help
Graph
1-
v
0,5- 4
i -
0-| L
o
0,5-
'1_l 1 1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10
&~ o
0.0 de Line: 4, Column: 1

You may also have multiple Script Windows open at the same time by selecting “New Script Editor”

in the File menu:

B LabVIEW MathScript

oM Edit Yiew Operate Tools Window Help

New VI Chrl+nN

Mew...

Open... Ctrl+O
Close Chrl+w
Close all

Save Ctrl+s
Save As...

New Project
Open Project...

LabVIEW MathScript Properties Ctrl+I

Recent Projects >
Recent Files 4

Exit

FITESEET
- 1.65831

o g
@ G

ans =

+ 1.65831
1.65831

oo
@0
'

l Variables | Script | History J

|| ERRJE)

kiLabiLab Workip

ript L

\CodelTask 7, |

Command Window

L |

9.0f3

Line: 14, Column: 1

This gives:

Control Theory with MathScript Examples
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(SR oi_a

P Script

B Script

[

- [Bx]

Q@'@ Variables | Script | History |
=] @| M:\workiLabiLab WorkiMathScript LablSolutions\CodelTask 7} ‘
ol
Lo 1
™
v
':lldle J| Line: 14, Column: 1
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15 MathScript Basics

2.9 Flow Control

You may use different loops in MathScript

e Forloop
e  While loop

If you want to control the flow in your program, you may want to use one of the following:

e |f-else statement
e Switch and case statement

Example:

function av = calc averageZ2 (x)
%$This function calculates the average of a vector x
N=length (x) ;
tot=0;
for i=1:N
tot=tot+x (i) ;
end
av=tot;

[End of Example]

2.10 Control Design in MathScript

Type “help cdt” in the Command Window in the MathScript environment. The LabVIEW Help window
appears:

Control Theory with MathScript Examples



16 MathScript Basics

E? LabVIEW Help @@@
& : g

Skjul Sek Tilbake Alternativer

Innhold ‘ Stikkordregister | Sk | Favoritter|

Control Design MathScript RT Module Functions

% glonmdera!lons for Embedded Targets A Requires: Control Design and Simulation Module and MathScript RT Module
lossary . . ) .
@ @ Building and Configuring Simulations Use the Control Design MathScript RT Mod}:le func_tlcns to GE§|gn, analyze, and
Q Modularizing the Simulation Diagram s_lmulate linear coptrcller mod_els using a text-based \ar‘gua_gc. The following is a
=] odularnizing the simulation Liagral list of Control Design MathScript RT Module classes of functions and commands that
@ Trimming and Linearizing Nonlinear Models LabVIEW MathScript supports.

] Q Executing Simulations in Real Time

o X The LabVIEW Digital Filter Design Toolkit installs additional MathScript RT Module
@ Q Optimizing Design Parameters e g

functions.
# @ Using the Simulation Model Converter
= ([ Control Design and Simulation Vs and Functions Class Description
Error Codes cdops Arithmetic operator functions

@ Q Block Diagram Error Messages

5 s cdplots | XY plane functions
[2] Mathematical Model Defiritions

= () Control Design Vis and Functions cdsclvers |Equation solver functions
Control Design Contrals and Indicators connect |Model interconnection functions
@ @ Analytical PID Design VI construct |Model construction functions

3] 0 Dynamic Characteristics ¥ls

convert [Model conversion functions
@ Q Frequency Response Vs

] 0 Implementation ¥ls and Functions dynchar |Dynamic characteristics functions
El Q Model Construction ¥ls frars Frequency response analysis functions
=] Q Model Conversion Vls info Medel information functions

@ Q Model Information Vs

& reduce [Medel reduction functions
] Q Model Interconnection Vis —

@ Q Model Reduction Vis ssanals |State-space analysis functions
# Q Predictive Control Vls ssdesign |State-feedback design functions
3] Q Solvers Vls timeresp |Time response analysis functions

# @ State Feedback Desian Vis
] Q State-Space Model Analysis Vis )
® Q Stachastic Systems Vis Submit feedback on this topic

] Q Time Response Vls

€

|~
v

Use the Help window and read about some of the functions available for control design and
simulation.

See Appendix A for a list of some of the most used functions with description and examples.
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3Transfer Functions

3.1 Introduction

Transfer functions are a model form based on the Laplace transform. Transfer functions are very
useful in analysis and design of linear dynamic systems.

A general Transfer function is on the form:

Where y is the output and u is the input.

A general transfer function can be written on the following general form:

numerator(s)  bys™ + bp_1S™ " + -+ bys + by

H(s) = =
(s) denominator(s)  aps"™+ an_1S" 1+ -+ ays+ay

The Numerators of transfer function models describe the locations of the zeros of the system, while
the Denominators of transfer function models describe the locations of the poles of the system.

Below we will learn more about 2 important special cases of this general form, namely the 1.order
transfer function and the 2.order transfer function.

3.1.1 1.order system

A 1.order transfer function:

H(s) =

Where K isthe Gainand T isthe Time constant.

A step response of such a transfer function has the following characteristics:

17



18 Transfer Functions

KU

y(t)
63%

3.1.2 1.order system with time-delay

A 1.order transfer function with time-delay may be written as:

—Ts

H(s) =

Ts+1e

A step response of such a transfer function has the following characteristics:

Step: K Step response:
H(s) = e’ 4
A I's+1 100%
U : 63%
u(?) Prosess with Vuns(t)
—> sensor and —
oV — measurement filter
0 t
0% 0

Time-constant

with time -delay )
Time-  Time-

delay constant

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]

From the step response of such a system we can easily find K, T and T.

More about time-delays in a later chapter.

3.1.3 2.order system
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A 2.order transfer function:
K

(wio)2 + zqwio+ 1

H(s) =

More about 1.order and 2.order transfer functions later in this chapter.

3.2 MathScript

MathScript has several functions for creating transfer functions:

Function Description Example
tf Creates system model in transfer function form. You also can igum: H] " .
. . p en=[1, ’ ;
use this function to state-space models to transfer function S = (2 (e, o)
form.
>K = 1;

Sys_orderl Constructs the components of a first-order system model based L
on a gain, time constant, and delay that you specify. You canuse .y _ sys;orderl (X, tau)
this function to create either a state-space model or a transfer
function model, depending on the output parameters you

specify.
Sys_order2 Constructs the components of a second-order system model iii B 265
based on a damping ratio and natural frequency you specify. You o, gen) = sys_order2 (wn, dr)
can use this function to create either a state-space model or a >SysTF = tf(num, den)
transfer function model, depending on the output parameters
you specify.
pid Constructs a proportional-integral-derivative (PID) controller ZIT'(f i 825
model in parallel, series, or academic form. Refer to the >Sysouth . pid(Ke, Ti,
LabVIEW Control Design User Manual for information about 'academic') ;

these three forms.

Given the general transfer function:

numerator(s)  bys™ + bpy_1S™ " + -+ bys + by

denominator(s)  aps™+ ap_1s™ 1+ +as+ag

H(s) =

In MathScript we can define such a transfer function using the built-in tf function as follows:

num=[bm, bm 1, bm 2, .., bl, b0]
den=[an, an 1, an 2, .., al, a0]
H = tf£ (num, den)

Example:

1. Given the following transfer function:

25>+ 3s+4

H(s) = 5s+9

MathScript Code:

num=[2, 3, 4];
den=[5, 91];
H = tf£ (num, den)
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2. Given the following transfer function:

MathScript Code:

num=[4, 0, 0, 3, 471;
den=[5, 0, 91;
H = tf£ (num, den)

Note! If some of the orders are missing, we just put in zeros. The transfer function above can be
rewritten as:

45*+0-s34+0-s>+3s+4
5524+0-s+9

H(s) =

3. Given the following transfer function:

We need to rewrite the transfer function to get it in correct orders:

25>+ 3s+7

H(s) = 652 + 5s

MathScript Code:

num=[2, 3, 7];
den=[6, 5, 01];
H = tf£ (num, den)

[End of Example]

For creating more complex transfer functions, some of the following functions are useful:

Function Description Example
conv Computes the convolution of two vectors or matrices. Example: iiené = S ﬂ i
en = ’ 7
H(S) — K >C = conv(denl, den2)
(2s+1)(3s+ 1)
series Connects two system models in series to produce a model >Hseries = series (1, H2)

SysSer with input and output connections you specify. Example:
H(s) = Hy(s)H;(s)
feedback Connects two system models together to produce a closed-loop ZSY?H;)S'Ed = feedback(Sysin_ I,
oae . sin
model using negative or positive feedback connections TR
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3.3 First order Transfer Function

A first order transfer function is given on the form:

H(s) =

Ts+1

Where
K is the Gain
T is the Time constant
In the time domain we get the following differential equation (using Inverse Laplace):
1
x = T (—x + Ku)

We can draw the following block diagram of the system:

v
Y

u 1 X 1 X
T S

Example:

We will use the tf function in MathScript to define the transfer function:

H =
(s) Ts+1

Weset K=1 and T = 1.

MathScript Code using the tf function:

K=1;

T=1;

num=[K] ;

den=[T, 11;

H = tf (num, den)

We enter the code shown above in the Script window as shown below:
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B LabVIEW MathScript

File Edit VYiew Operate Tools Window Help Use the Scri t Window
Output Window Variables History
For help, enter 'help classes' ~

F= =y
> B ] (= ]
Transfer Function
Inum=[1];
tput:l Zden=[1, 1]:

, You see the results in 7 - cooom den) Save your script
———————————— the Output Window

1,000s+1,000

Input.

> ——

Execute your script

Continuous-time model.

Here you can enter several line of code
that will be executed in a sequence

MathScript Code using the sys_order1 function:

K =1;
=
H = sys_orderl(K, T)

[End of Example]
Step Response:

The step response for a 1.order transfer function has the following characteristics (a step U at t =
0):

KU

y(t)
63%

T t
The time constant T is defined as the time where the response reaches 63% of the steady state value.

Example:

Given the following 1.order transfer function:

1
H =—
() s+1
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(K=1T=1)

We create the following code in order to plot the step response for this system:

K=1;

T=1;

num=[K] ;

den=[T, 11;

H = tf£ (num, den);
Step (H)

This gives the following step response:

 Plot 1 - [B]%]
File Edit Yiew Project Operate Tools Window Help
Graph Step Response
1
0,91
0,8-
» 07"
=
2
ELUS-
<
0,5+
0,4-
0,3
0,2-
0,1-
0-l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
o o5 1t 15 2 25 3 35 4 45 5 55 6 65 7 75 8
Time {s)

[End of Example]

3.3.1 1.order system with time-delay

A 1.order system with time-delay has the following transfer function:

H(s) = K e ™
Ts+1

In the time domain we get the following differential equation (using Inverse Laplace):

X = %(—x + Ku(t — 1))

We can draw the following block diagram of the system:
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A4
v

Step Response:

Step: K Step response:

H(s) = e’ ™S 4
N Ts+1 100%

U . 63%
u(t) Prosess with Vuusl) ’
—> sensor and —
oV measurement filter
0 ! 0%

Time-constant

with time -delay )
Time- Time-

delay constant

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]

Example:

H(s) = -3s

2s+1
(K=1,T=2,T=3)

The MathScript code becomes (using the built-in sys_orderl function):

K =1;
T = 2;
delay=3;

H = sys orderl (K, T, delay)

step (H)

The plot of the step response becomes:
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Transfer Functions

B/ Plot 1 Q@@

File Edit Yiew Project Operate Tools Window Help

Graph Step Response

1-

Amplitude
o
o
1

Time (s)

[End of Example]

3.4 Second order Transfer Function

A second order transfer function is given on the form:

H(s) =

Where
K is the gain
{ zetais the relative damping factor

wylrad/s] is the undamped resonance frequency.

Example:
Define the transfer function in MathScript. Set K = 1,{ =1, wg = 1
Use the tf function or the sys_order2 function in MathScript

MathScript Code:

num=[1];
den=[1, 2, 1]1;
H = tf£ (num, den)
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or:

dr = 1

wn = 1

[num, den] = sys_order2(wn, dr)

H = tf£(num, den)

[End of Example]

2.order system - special case: When { > 0 and the poles are real and distinct we have:

B K
C(Tys+ D) (Ts + 1)

H(s)

We see that this system can be considered as two 1.order systems in series.

1
H(s) = Hi(s)H(s) =

K

3.5 Simulation

MathScript has several functions used for simulation purposes:

(Tis+1) (Tys+1) (This+ D(Tys + 1)

Function Description Example

plot Generates a plot. plot(y) plots the columns of y against the ii B ioigﬁm 1115
indexes of the columns. Splot (X, )

step Creates a step response plot of the system model. You also can ig::i H 3]1 .
use this function to return the step response of the model SHot£ (num, den) ;
outputs. If the model is in state-space form, you also can use this >t=[0:0.01:10];
function to return the step response of the model states. This >step(H,t);
function assumes the initial model states are zero. If you do not
specify an output, this function creates a plot.

Isim Creates the linear simulation plot of a system model. This >t = [0:0.1:10]

>u = sin(0.1l*pi*t)'

function calculates the output of a system model when a set of
inputs excite the model, using discrete simulation. If you do not
specify an output, this function creates a plot.

>1sim(SysIn, u, t)

Plots functions: Here are some useful functions for creating plots: plot, figure, subplot, grid, axis,

title, xlabel, ylabel, semilogx — for more information about the plots function, type “help plots”. Or

type “help <functionname>".

3.6 Block Diagrams

MathScript have built-in functions for manipulating block diagrams and transfer functions.

Serial:
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o =2

u
——[ () e P e ——{h©he)

A 4

MathScript:

H = series (hl,h2)

Parallel:
> hy(s) H(s)=':E3
y u
- vt —— () +hy () =
h, (s)
MathScript:

H = parallel (hl,h2)

Feedback:
u ,
Y . _y(®
_ hl (S) i H(s) = u(s)
u
d> o !
1+ hy(s)ha(s)
hy(s) [€
MathScript:

H = feedback (hl,h2)

3.7 Analysis of Standard Functions

Here we will take a closer look at the following standard functions:
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Transfer Functions

e |ntegrator
e 1.Order system
e 2. 0Order system

3.7.1 Integrator

The transfer function for an Integrator is as follows:

K
H(S):g

Pole(s):

The Integrator has a pole in origo: p =0

T Im(s)
| P Re(s)

In MathScript you may use the poles function in order to find the poles.

Example:

K=1;

T=1;

num=[K] ;
den=[T 1];
H=tf (num, den) ;
p=poles (H)

[End of Example]

Step response:

Note! In MathScript we can use the step function for this purpose.

Here we will find the mathematical expression for the step response (y(t)):

The Laplace Transformation pair for a step is as follows:

-1
S

The step response of an integrator then becomes:

Control Theory with MathScript Examples



29 Transfer Functions

K
y(s) = H(s)u(s) = "

We use the following Laplace Transformation pair in order to find y(t):

1
5—2 St
Then we get:
y(t) = KUt

- We see that the step response of the integrator is a Ramp.

Conclusion: A bigger K will give a bigger slope (In Norwegian: “stigningstall”) and the integration will
go faster. The simulation in MathScript below will also show this.

Below we will show this by using the step function in MathScript:

Example:

In MathScript we use the step function for simulation of a step response. We set K=0.2, 1, 5.

MathScript Code:

t=[0:0.5:5];
K=0.2

num=[K] ;

den=[1 0];
Hl=t£f (num, den) ;
K=1

num= [K] ;

den=[1 0];

H2=tf (num, den) ;

K=5

num=[K] ;

den=[1 0];
H3=tf (num, den) ;

step (H1,H2,H3, t)
axis ([0, 5, 0, 51])

Note! Using a For Loop in this case would be a better approach.

Plot:
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B Plot 1 E]@@

File Edit View Project Operate Tools Window Help

Graph Step Response
5-

4,5-

Amplitude

1 1 1 1 1 1
0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Time {s)

[End of Example]

3.7.2 1. order system

The transfer function for a 1.order system is as follows:

H(s) =

Ts+1

Pole(s):

A l.order system has a pole: p = —%

T Im(s)
P Re(s)

an ‘

In MathScript you may use the poles function in order to find the poles. The function pzgraph plots
the poles and zeros

Step response:
Note! In MathScript we can use the step function for this purpose.
Here we will find the mathematical expression for the step response (y(t)):

y(s) = H(s)u(s)
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Where

U
u(s) = 5

We use inverse Laplace and find the corresponding transformation pair in order to find y(t)).

K U
Ts+1 s

y(s) =

We use the following Laplace transform pair:

e k(l—e7t/M

(Ts + 1)s

This gives:

y(t) = KU1 — e~ t/T)

The step response is as follows:

Y

KU

y(t)
63%

T t
Below we will show this by using the step function in MathScript:

Example:

For different values for K, eg., K=0.5, 1, 2 and T=1. We use the step function in MathScript.

t=[0:0.5:10];
den=[1 1];

K=0.5;
num=[K] ;
Hl=t£f (num, den) ;
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K=1;
num=[K] ;
H2=tf (num, den) ;

K=2;

num=[K] ;

H3=tf (num, den) ;

step (H1,H2,H3,t) ;
axis ([0, 10, 0, 21);

Note! Using a For Loop in this case would be a better approach.

Below we see the plot for this:

File Edit Yiew Project Operate Tools Window Help

Graph Step Response
2-

1,8- =
2

Amplitude
o
1

1 1 1 1 1 1 1 1 1 1 1 1 1
0051 1,52 253 354 455556657 756 859 9510
Time {s)

[End of Example]

Example:

For different values for T: T=0.2, 0.5, 1, 2, 4 and K=1
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> LabVIEW MathScript A=

Fle Edt View Operate Tooks Window Help

Output Window variables | Seript | History |

B Plot 1 EEx (S]] (2] | mworkiLablLab workimathseript LabiSolutions|Code! |
t=[0:0.5:10) ~

10);

>

File Edit View Project Operate Tools Window Help

Graph Step Response T=02;
11 den=[T 1];
Hi=tf(num,den);

T=0.5;
den=[T 1];
Hz=tF(num,den);

T=1;
den=[T 1];
H3=tF(num,den);

T=2;
den=[T 1];
Ha=tf{num,den);

Amplitude

T=4;
den=[T 1];
HS=tf{num,den);

step(H1, H2, H3, H4, HS, b);
axis([0, 10, 0, 1.1]);

TT="

) 1 1 1 1 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
051 1,52 253 354 455 556657 758 859 9510
Time (s)
p p]
EE ‘ e || [Line: 26, Column: 20

Note! Using a For Loop in this case would be a better approach.
We see from Figure above that smaller T (Time constant) gives faster response.

[End of Example]

3.7.3 2. order system

The transfer function for a 2. order system is as follows:

Hs) = Kw,y? B K
s _52+25w05+w02_(i

Wo

2 s
) +20—+1
Wo

Where

e K isthe gain
e ( zetais the relative damping factor
e wylrad/s] is the undamped resonance frequency.

We have that:
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¥alue p Type of step
of § Poles p;and p; response (1)
Real and distinct - Overdgmped
Im 1
C >1 05
Re 0
| 50 5 101
. Critically damped
Real and multiple
Im
=1 P
Re
Complex conj. Underdamped
Im
0<{<l X
X | Re
. Undamped
Imaginary
" AWAWA
=0
: JATA
Unstable
Pos. real part
Im
e A
N
. — N7

Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010.

- Show this in MathScript

Special case: When ¢ > 0 and the poles are real and distinct we have:

K

H(s) =

(Tys+ 1) (Tps+ 1)

We see that this system can be considered as two 1.order systems in series:

H(s) = Hi(s)H(s) =

K

(Tis+1) (Tys+1) (This+ D(Tys + 1)
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4.1 Introduction

A state-space model is a structured form or representation of a set of differential equations.
State-space models are very useful in Control theory and design. The differential equations are
converted in matrices and vectors, which is the basic elements in MathScript.

We have the following equations:
561 = allxl + aleZ + b + anlxn + bllul + b21u2 + b + bnlun

D'Cn = A1mXq + AormXy + -+ AnmXn + blmul + meuZ + -+ bnlun

This gives on vector form:

%1 ] X4 Uq
, i Ana]|, by - bp u
X2l _ | : - : 2l 4| . . 2
N A1m Anm ¥ bim bnm u
=N A N B =
x x u
V1 X1 Usp ]
C11 Cn1 di1 dni
Y2 _[ ] X2 n s ] Uz
y, C1m Cnm X dlm dnm u
L nJ C n D n
Yy x u

This gives the following compact form of a general linear State-space model:

X = Ax + Bu
y=Cx+Du
Example:
We have the following system:
X1 = Xy
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25('2 == —2x1—6x2+4u1+8u2
y = 5x1+6x,+7u,

Convert to the following state-space form:

X = Ax + Bu
y=Cx+Du
First we do:
Xy = X
Xy = —x1—3x,+2u +4u,
y = 5x1+6x,+7u,
This gives:

5 B | RS P [

~———— ——
A B

. X1 Ug
y=15_6l[]+17_ol,)]
c D
-> Try to define this State-Space model in MathScript.

[End of Example]

4.2 MathScript

MathScript has several functions for creating state-space models:

Function Description Example
SS Constructs a model in state-space form. You also can use this ig - %(1].21] 3 4]
function to convert transfer function models to state-space SC = BY
form. >SysOutSS = ss (&, B, C)
Sys_orderl Constructs the components of a first-order system model based i‘éai i; ..
on a gain, time constant, and delay that you specify. Youcanuse . (5, 5, ¢, p] - sys_orderl (K, tau)

this function to create either a state-space model or a transfer
function model, depending on the output parameters you

specify.
Sys_order2 Constructs the components of a second-order system model idr - 265
- - q . wn =
based on a damping ratio and natural frequency you specify. You . 5, ¢, b] - sys_order2 (wn, dr)
can use this function to create either a state-space model or a >SysSS = ss(a, B, C, D)
transfer function model, depending on the output parameters
you specify.

Example:
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Given a mass-spring-damper system:

k
W t——-ﬁn
m
Y
—|—= X0
o | ——

Where c=damping constant, m=mass, k=spring constant, F=u=force

The state-space model for the system is:

b e [ PR

Define the state-space model above using the ss function in MathScript. Set some arbitrary values for
c=damping constant, m=mass, k=spring constant.

We will use MathScript to define the state space model:

MathScript Code:

c=1;

m=1;

k=1;

A= [0 1; -k/m -c/m];
B = [0; 1/m];

C = [1 0];

SysOutSS = ss (A, B, C)

We use the step function in MathScript in order to simulate the step response:
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State-space Models

P LabVIEW MathsSe

Fie Edt View Operate ook Window Help
Output Window | variables | Script | History |
~
— = e - =
& piot 1 = (S)(:)( ] PL]| mtworkiLabiLab WorkiMathcript LabiolutonsiCodet |
Fle Edt View Project Operate Iools Window Help L
k=s0;
Graph Step Respanse =001 Kim -
0,0375 B=[0; 1 fm]; '
B Cc=[10];
0,035 SysOutss = ss(A, B, C);
0,0325-]
0,03+ step(SysOutss)
0,0275-]
& 0,025
2
B 0,025
< o,02-|
0,0175-]
0,015
0,0125-]
0,01-
0,0075-]
0,005~
0,0025-| g
-
L T L T T T L T T S S R S R T T
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 |
Time (s) o
] e
foora ] e || [Line:4, Column: 1

Try with different values of c, m and k and watch the results.

[End of Example]
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5Time-delay and
Pade’-approximations

5.1 Introduction

Time-delays are very common in control systems. The Transfer function of a time-delay is:
A 1.order transfer function with time-delay may be written as:

—Ts

H(s) =

Ts+1e

=TS

In some situations it is necessary to substitute e with an approximation, e.g., the

Padé-approximation:

1 —kys + kys? + - + kys™
T 14 kys 4 kps? 4 o+ kys™

—Ts

Below we see a 1.order and a 2.order Padé-approximation:
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B Plot 1 g@@

File Edit View Project Operate Tools Window Help

Graph Step Response
1,2

1-]

Amplitude

1 1 1 1 1 1 1 | 1 1 1 | 1 | 1 1 1 1
0051152 253354 4556556657 758 859 9510
Time (s)

5.2 MathScript

MathScript has a built-in function called pade for creating transfer functions for time-delays:

Function Description Example
pade Incorporates time delays into a system model using the Pade >[num, den] = pade(delay, order)
>[A, B, C, D] = pade(delay, order)

approximation method, which converts all residuals. You must
specify the delay using the set function. You also can use this
function to calculate coefficients of numerator and denominator

polynomial functions with a specified delay.
>K=4; T=3; delay=5;
Sys_orderl >H = sys_orderl (K, T, delay)
set >H = set (Hl1, 'inputdelay', delay):;

series >H = series (H1,H2);

Example:

Here are some examples of how to use the pade function:

SysCon = zpk(l, 3.2, 6)
SysCon = set (SysCon, 'inputdelay', 6, 'outputdelay', 1.1)
SysDel = pade (SysCon, 2)

delay = 1.2
order = 3
[num, den] = pade(delay, order)

Or her is an alternative without using the pade function:

s=tf('s'); $Defines s tobe the Laplace variable used in transfer functions
K=1; T=1; %Gain and time-constant
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Hl=tf(K/ (T*s+1l)); %Creates H as a transfer function
delay=1l; %$Time-delay

H2=set (H1, 'inputdelay',delay) ;%Defines H2 as Hl but with time-delay

figure (1) %$Plot of simulated responses will shown in Figure 1
step (H1,H2) %Simulates with unit step as input, and plots responses.

[End of Example]

Example:

This example shows Pade’ approximations with different orders:

P LabVIEW MathScript =3
File Edit Yiew Operate Tools Window Help
Output Window | variables | Script | History |
B/ Plot 1 [B[=E3) ||| (S5)6)( ) () metworkiLabiLab workiMathscript LabisolutionsiCode! |
File Edit View Project Operate Tools Window Help t=[0:0.1:10] ~
Hi=pade(3,1)
Graph Step Response H2=pade(3,2)

1,2 H3=pade(3,3)
H4=pade(3,4)
Hé4=pade(3,10)

step(H1,H2,H3,H4,HS, 1)

Amplitude

o2
N
'

[

T T T S T O T T S T S T SO S S T S T
0051152253354 45656556657 7538859 9510
Time (s)

Line: 7, Column: 11

[s.0r3 Ide

[End of Example]

If we have a 1.order system, we can also use the function sys_order1().

Example:

Given the following transfer function:

H — —4s
) =3571°¢

We define the transfer function using sys_orderl with the following code:

~e Ne
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delay = 4;

H = sys orderl (K, T, delay)

In addition we find the step response:

step (H)

This gives the following plot:

B! Plot 1 9(=(E3]

File Edit View Project Operate Tools Window Help

Graph Step Response
3-
2,8~
2,6~
2,4~
2,2~

0 T T I I | 1 | | ! 1 1

1 1 1 1 1
0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16
Time ({s)

We know that a step response of such a transfer function has the following characteristics:

Step: K Step response :
H(s)=——e™™ A
N Ts+1 100%
U . 63%
u(t) Prosess with Vi)
— sensor and —
o}V— measurement filter
0 t
0% 0

Time-constant

with time -delay )
Time-  Time-

delay constant

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]
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So we can easily find K, T and T from the graph:

B! Plot 1
File Edit Yiew Project Operate Tools Window Help

2,8-
2,6
2,4-
2,2-

-

Amplitude
o
1

1,6~
1,4-
1,2
i
0,8
0,6
0,4-
et T | T
0-5 I I I 1 | |
0 1 2 3 4 6

S 7
. r > Time {s)

8 9

K Graph Step Response
e

B=1E3

1 1 1 1 1
12 13 14 15 16

3 _
e 4s
2s+1

Another way to define H(s) =

is using the tf() and set() functions:

s = tf('s")
H1 = tf(K/(T*s+1));
H set (H1, 'inputdelay', delay):;

step (H)

We can also combine tf() and the pade() function like this:

num = [K];
den [T, 11;
H1 = tf (num, den);

order = 5;

H2 = pade(delay, order)
H = series(H1, H2)

step (H)

i ) . 3 . .
In the last example we first defined the transfer function 7or7 Using the tf() function, then we

defined the time delay e™*¢

using the series() function.

In the last example we get the following plot:

using the pade() function. Finally we have combined these 2 functions
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[End of Example]

B! Plot 2

File Items Tools Help

Graph

Step Response

EEX

3-
2,75~
2,5-
2,25~

2
1,75-
1,5-
1,25-

1-
0,75~
0,5-
0,25~

0-
0,25 ., .

0

Amplitude

7 8 9

Time (s)

1 [ | (] Lo
10 11 12 13 14 15 16 17
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6.1 Introduction

A dynamic system has one of the following stability properties:

Asymptotically stable system

]
Marginally stable system

[ )
Unstable system

Dynamics and Control: TechTeach, 2010]:

Asymptotically stable system:

>

ANWNS
\J Y

Marginally stable system:

AAN

»

VY

Unstable system:

l

———
-

L\/\ /\
\/

[ )
Below we see the behavior of these 3 different systems after an impulse [F. Haugen, Advanced

lim h(t) =0

t—>oo

0< lim h(t) < o

t—>oo

lim h(t) = o

t—>oo
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6.2 Poles

The poles are important when analysis the stability of a system. The figure below gives an overview
of the poles impact on the stability of a system:

Left half plane im4 Right half plane

.

/

Asymptoticallystable
pole grea

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]
Thus, we have the following:

Asymptotically stable system:

Im Each of the poles of the transfer function lies strictly in
the left half plane (has strictly negative real part).

7A) Re
Marginally stable system:
Im One or more poles lies on the imaginary axis (have real
part equal to zero), and all these poles are distinct.
X Besides, no poles lie in the right half plane.
Re
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Unstable system:

Im At least one pole lies in the right half plane (has real part
greater than zero).

X Re
Im Or: There are multiple and coincident poles on the
imaginary axis.
1
Example: double integrator H(s) = =
! Re P g () =3

Example:

Given the following system:

s+1
H(s) = ———
(s) s2—s+3

We will analyze the stability of this system. In order to do that we will plot the step response and find
the poles for this system.

We start by defining the transfer function and plotting the impulse response:

clear

ele

% Define Transfer Function
num=[1,1];

den=[1,-1,3];

H=t£f (num, den) ;

% Step Response
t=[0:0.01:10];
impulse (H, t) ;

The impulse becomes:
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File Edit View Project Operate Tools Window Help

Graph Impulse Response
80—

60-
40-
20-
0-
-20-

Amplitude

-40-
-60-
-80-

-100-

-120-

-140-

-160-

-180-

-ZDD-I 1 1 1 1 I I I I 1 1 1 1 1 1 1 I I I I 1
oo0s 1152253 35 445655566657 75885 9 9510
Time (s)

- From the plot we see that the system is unstable.

Next we find the poles for the system:

poles (H)
pzgraph (H)

The poles are as follows (found from the built-in poles function):
0.5 + 1.65831

0.5 - 1.65831

We have also used the built-in pzgraph function in order to plot the poles (and zeros):
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File Items Tools

Graph Pole-Zero Map Im

1,75
1,5-
1,25-
1-
0,75-
0,5-
0,25-

A X

4
-0,25-
-0,5-
-0,75-
-1 -
-1,25-
-1,5-

1,75+, 1 1 1
-1 -0,75 -0,5 -0,25

Imaaginary

- We see from the plot that the poles (red cross) lies in the right half plane (has real part greater

than zero) and that there are multiple poles on the imagin
unstable.

[End of Example]

6.3 Feedback Systems

ary axis, which indicate that the system is

Here are some important transfer functions to determine the stability of a feedback system. Below

we see a typical feedback system.

>

r e ) u
() > Controller

S |

Process
[

<

eNnsors |

6.3.1 Loop Transfer function

<+

The Loop transfer function L(s) (Norwegian: “Slgyfetransferfunksjonen”) is defined as follows:

[L(s) = Ho()Hy (5)Hm (5)]

Control Theory with MathScri
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Where

H_.(s) is the Controller transfer function

Hy,(s) is the Process transfer function

H,,(s) is the Measurement (sensor) transfer function

Note! Another notation for L is Hy

6.3.2 Tracking transfer function

The Tracking transfer function T(s) (Norwegian: “Fglgeforholdet”) is defined as follows:

y(s) ~ HHpHp,  L(s)

T@):r@)_1+HJ%mn_1+L@):

1—-5(s)

The Tracking Property (Norwegian: “fglgeegenskaper”) is good if the tracking function T has value
equal to or close to 1:

IT| =~ 1

6.3.3 Sensitivity transfer function

The Sensitivity transfer function S(s) (Norwegian: “Sensitivitetsfunksjonen/avviksforholdet”) is

defined as follows:

_el) _

S(s) r(s) 1+L(s)

=1-T(s)

The Compensation Property is good if the sensitivity function S has a small value close to zero:
S| = 0or |S| « 1

Note!

L(s) 1

T“)+S“):1+L@) 1+ L(s)

1

6.3.4 Characteristic Polynomial

We have that:

_n(s)
L& =3

And:
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n.(s)
SR B 1O B N LA O
r(s) 1+L(s) 4 n ny(s)  di(s) +ny(s)
d.(s)

Where n;(s) and d;(s) numerator and the denominator of the Loop transfer function L(s).

The Characteristic Polynomial for the control system then becomes:

la(s) = d,(s) + n.(5)]
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7.1 Introduction

The frequency response of a system is a frequency dependent function which expresses how a
sinusoidal signal of a given frequency on the system input is transferred through the system. Each
frequency component is a sinusoidal signal having a certain amplitude and a certain frequency.

The frequency response is an important tool for analysis and design of signal filters and for analysis
and design of control systems. The frequency response can be found experimentally or from a
transfer function model.

We can find the frequency response of a system by exciting the system with a sinusoidal signal of
amplitude A and frequency w [rad/s] (Note: w = 27mf) and observing the response in the output
variable of the system.

The frequency response of a system is defined as the steady-state response of the system to a
sinusoidal input signal. When the system is in steady-state it differs from the input signal only in
amplitude/gain (A) and phase lag (¢).

If we have the input signal:
u(t) = U sinwt
The steady-state output signal will be:

y(t) = UA sin (wt + ¢)
Y

Where A = % is the ratio between the amplitudes of the output signal and the input signal (in

steady-state).

Aand ¢ isa function of the frequency w so we may write 4 = A(w), ¢ = Pp(w)

For a transfer function

Hes) =28

u(s)

We have that:

[H(jw) = [H(w)|e/4HT»)|
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Where H(jw) is the frequency response of the system, i.e., we may find the frequency response by
setting s = jw in the transfer function. Bode diagrams are useful in frequency response analysis.
The Bode diagram consists of 2 diagrams, the Bode magnitude diagram, A(w) and the Bode phase

diagram, ¢(w).

The Gain function:

|A(w) = |H(jw)||

The Phase function:

[¢(w) = 2H(jw)]

The A(w)-axis is in decibel (dB), where the decibel value of x is calculated as: x[dB] = 20logox

The ¢(w)-axis is in degrees (not radians!)

Here you will learn to plot the frequency response in a Bode diagram.

Below we see an example of a Bode plot created in MathScript:

B Plot 1 E]@@

File Items Tools Help
Bode Plots
Magnitude

0

-10-

20—

30—

40—

50—

60—

70, 1 ! 1 1 1 '
0,001 0,01 0,1 1 10 100 1E+3

Phase {deg)

Phase

201
401
0+
0+

-100-, | ! | | | |
0,001 0,01 0,1 1 10 100 1E+3

Frequency (rad/s)

7.2 MathScript

MathScript has several functions for Frequency responses:

Function Description Example
bode Creates the Bode magnitude and Bode phase plots of a system igum: %‘2” "1]
. . g en= ’ 7
model. You also can use this function to return the magnitude S = (&2 (mum, den)

and phase values of a model at frequencies you specify. If you >bode (H)
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bodemag

margin

margins

do not specify an output, this function creates a plot.
Creates the Bode magnitude plot of a system model. If you do
not specify an output, this function creates a plot.

Calculates and/or plots the smallest gain and phase margins of a
single-input single-output (SISO) system model. The gain margin
indicates where the frequency response crosses at 0 decibels.
The phase margin indicates where the frequency response
crosses -180 degrees. Use the margins function to return all gain
and phase margins of a SISO model.

Calculates all gain and phase margins of a single-input
single-output (SISO) system model. The gain margins indicate
where the frequency response crosses at 0 decibels. The phase
margins indicate where the frequency response crosses -180
degrees. Use the margin function to return only the smallest
gain and phase margins of a SISO model.

>[mag, wout]
>[mag, wout] = bodemag (SysIn,

wmax])

>[mag, wout]

wlist)

>num = [1]
>den = [1,
>H = tf (num,
margin (H)
>[gmf, gm,

= bodemag (SysIn)
[wmin

= bodemag (SysIn,

5, 6]
den)

pmf, pm] = margins (H)

7.3 Examples

Example:

We have the following transfer function

_y(s) 1
HE) = e 571

Below we see the script for creating the frequency response of the system in a bode plot using the

bode function in MathScript. Use the grid function to apply a grid to the plot.

Q.

H =
bode

% Transfer function H=1/ (s+1)
num=[1];
den=[1,
tf (num,
(H) ;

11;

den)

[End of Example]

Example:

| this example we will use 3 different methods to find A and ¢ for a given frequency w.

Given the following system:

H=—
Ts+1

Set K=1,T=1

The input signal is given by:

|u(t) = U sinwt

The steady-state output signal will then be:
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y(t) = UA sin (ot + ¢)
Y

The gain is given by:

The phase lag is given by:

|q§ = —wAt [rad/s]|

Method 1: We create a MathScript program where we define the transfer function and define the
input signal and plot it.

We will then use the Isim function is MathScript to plot the output signal for a given frequency, w =
1, in the same plot. We set U = 1 in this example.

The following code will do this:

Define Transfer function

H =X oe
'_\

5
S
S

den

]
Il

tf (num, den):;

o°

Define input signal

t = [1: 0.1 : 12];
w = 1;

u=1;

u = U*sin(w*t);
figure (1)

plot (t, u)

Qo

% Output signal

hold on

lsim(H, 'r', u, t)

grid on

hold off

legend ('input signal', 'output signal')

This gives the following plot
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B Plot 1

File Items Tools Help

Graph

1_
0,8-
0,6-

0,4-

-1 =i

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11,5225 3354455556657 758859 951010,51111,512

input signal | |~
output signal [

From the plot above we get the following values:
Y =0.68
At = 0.8

We use the following Script to calculate Agg and Ggegrees:

% Values found from plotl for w=1
Y = 0.68;

A = Y/U;

AdB = 20*1oglO0 (A)

dt = 0.8;
phi = -w*dt; $%[rad]
phi degrees = phi*180/pi %[degrees]

This gives:

A=068  Agz = —3.35[dB]

¢ = —0.8rad, Paeg = —45.9 degrees

Method 2: Next we will use the bode function to plot the frequency response/Bode plot to see if we

get the same results.

The code for this is:

% Define Transfer function
K =1;
=
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num = [K];
den = [T, 11;
H = tf (num, den);

%Bode plot
figure (2)

bode (H)
subplot(2,1,1)
grid on
subplot (2,1,2)
grid on

This gives:

P Plot 2

Magnitude

File Items Tools Help

Bode Plots

EEX

0
-10-
20~
-30-
-40-
50—
-60-

70,
0,001

Phase

Phase (deg)

e
0,01

i

o s o, o o e s e e

0,1

Vg
1E+3

-20-

-40 -

-60-

-80-

-100-,
0,001

= e e e e e e

Ceen
0,01

e

e
0,1

Frequency (radjs)

Vg
1E+3

We use the Bode plot to find Agp and ¢gegrees for w =1

- As you can see from the plot above we get the same results.

Method 3: Here we will use the bode function to calculate the exact values and compare with the

other methods.

The MathScript becomes:

K 1z
T = 1;
num = [K];

den = [T, 11;

H = tf (num, den);

Define Transfer function
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%Calculated magnitude and phase values for some given frequencies
wlist = [0.001, 0.01, O0.1, 1, 3, 5, 10, 100];

[mag, phase, wout] = bode(H, wlist);

magdB = 20*1ogl0 (mag)

phase

This gives:

magdB =
-4.3429e-006
-0.0004
-0.0432
-3.0103
-10
-14.1497
-20.0432
-40.0004
phase =

-0.0573
=0,5729
-5.7106
-45
-71.5651
-78.6901
-84.2894
-89.4271

- we get the same results here also (as expected).

[End of Example]

Example:

We have the following transfer function:

Break frequency:

The mathematical expressions for A(w) and ¢(w):

|H(jw)lag = 20log4 — 20logy 2w)? + 1

2H(jw) = —arctan (2w)
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Frequency response of the system in a bode plot using the bode function in MathScript:

B LabVIEW MathScript Q@@

Fie Edt View Operate Iools Window Help
Output Window Variables | St | History
a
Input:l Output:l ~ ||| [S)R])(BJE2[ miworkiLabitab WorkiMathseript LabiSolutions|Code Task 5iTasks- |
%» Transfer function ~
4-000 num=[4];
------------ den(2, 13;
2,000s+1,000 H = tf(num, den)
oS-t % Bods Plo
Continuous-time model. bode(H)
nag_data =
% Margins and Phases
0.1 11.871 wlist=[0.1, 0.1, 0.25, 0.4, 0.625,2.5];
0.16 11.618
0.25 11.072 [mag, phase,w] = bode(H, wlist);
0.4 9.8928 . .
LGS o B3 magdB=20*l0g10(mag); %convert to B
2.5 -2.1085 mag_data = [w, magds]
phase._ data = [w, phase]
phase_data =
0.1 -11.31
0.16 -17.745
0.25 -26.565
0.4 -38.66
0.625 -51.34
2.5 -78.69
v
Command Window
a
v v
[Q.Ufﬂ 1de Line: 16, Column: 1
MathScript Code:
:
8 \
% Transfer function
num=[41];
den=[2, 11;

H = tf (num,
% Bode Plot
bode (H)

% Margins and Phases
wlist=[0.1, 0.16, 0.25,

den)

0.4, 0.625,2.5];

[mag, phase,w] = bode(H, wlist);
magdB=20*10gl0 (mag) ; %convert to dB
mag _data = [w, magdB]
phase data [w, phase]
This gives:

P/ Plot 1

File Items Tools Help

Bode Plots
Magnitude

20~
10|
0-
-10-|
20+
30~
40~
50|
60—, ' ' 1
0,001 0,01 0,1 1 10 100 1E+3

Phase

Phase (deg)

201
<0+
0+
50+

-100 T 1 1 1 1 1 1
0,001 0,01 0,1 il 10 100 1E+3

Frequency (radfs)

From the code above we get A(w) and ¢(w) for the following frequencies using MathScript code:
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w A(w) ¢(w)
0.1 11.9 -11.3
0.16 11.6 -17.7
0.25 11.1 -26.5
0.4 9.9 -38.7
0.625 7.8 -51.3
2.5 21 -78.6

We find A(w) and ¢(w) for the same frequencies above using the mathematical expressions for
A(w) and ¢(w) and a For Loop in MathScript. We define a vector w=[0.1, 0.16, 0.25, 0.4, 0.625,

2.5].

P LabVIEW MathScript

EBX

File Edit View Operate Tools Window Help
Output Window Variables | Seript | History
Transfer Function ~
@ M:\WorkiLabiLab WorkiMathScript Lab\Solutions\Code\Task 5 ‘
dEEall (el % Transfer Function ~
num=[4]; 3
4,000 den=[2, 1];
------------ H = tf{num, den)
2,000s+1,000
% Frequency List
oD TR, wilist=[0.1, 0.16, 0.25, 0.4, 0.625,2.5];
gain data = N= length{wlist);
0.1 11.871 for i=1:N
0.16 11.618
0.25 11.072 gain(i) = 20*log10(4) - 20*log10{sqrt{(2*wlist())~2+1));
phase(i) = -atan{2*wlist{i));
o2 SoEEHD phasedeq(i) = phase(i) * 180/pi; %convert to degrees
0.625 7.9546 !
2.5 -2.1085 end
phase_data =
% Check with results from the bode Function
0.1 -11.31 [gainz, phase2,w] = bode(H, wiist);
0.16 -17.745 gain2dB=20*log10{gain2); %convert to dB
0.25 -26.565
0.4 -38.66
0.625 -51.34 % Print to Screen
2.5 -78.69 gain_data = [wlist; gain]'
™ phase_data=[wlist; phasedeq]'
s
C d Winds gain_dataz = [w, gain2dB]
ommand Window phase_data2 = [w, phase2]
~
v v
Line: 1 lumn:
9.0f3 ‘ Ide l ine: 16, Column: 56

- We see the results are the same as the result found using the bode function.

[End of Example]
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7.4 Standard Transfer functions

Here we will find the frequency response for the following transfer functions:

e Amplifier

e Integrator

e Derivator

e 1l.order system
e 2.order system
e Zero-part

e Time delay

7.4.1 Amplifier (Norwegian: “Forsterker”):

The transfer function for an Amplifier is as follows:
Where
K is the gain

The mathematical expressions for A(w) and ¢(w) is as follows:

Gain:
A(w) = [Hjw)| = K
orin dB:
|H(jw)|ap = 20logK
Phase:
¢(w) = £H(jw) =0
Example:

We plot the Bode plot for the Amplifier using the bode function in MathScript (K=1):
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b LabVIEW MathScript

File Edit View Operate Tools Window Help

Output Window \ Variables | Script | History |
B I=1lp =
Plot 1 E]@‘ E]@ 13| :workiLabiLab workiMathscript LabiSolutions|Code! |
Bls Iems Tools Help % Define Transfer Function ~
Bode Plots =1 |
Magnitude H=H([K])
1 % Bode Plot
bode(H;
subplot(1,1,1)
0,5+ gri
subplat(z,1,1)
qric
-0,5-
-1-) i R I R
0,01 0,1 1 10 100
g
a
o
& Phase
=
T
1
0,5-
0,5-]
-1-) e N e R
0,01 0,1 1 10 100
Frequency (radfs)
™
IQ.DFG ‘ Ide Line: 9, Column: 10

- We see that both A(w) and ¢(w) are independent of the frequency w.

[End of Example]

7.4.2 Integrator

The transfer function for an Integrator is as follows:

H(s) =

Where
K is the gain

The mathematical expressions for A(w) and ¢(w) is as follows:

Gain:
Aw) = IH(w)l = =
©) = [Hjw)| = —
orin dB:
] K
|H(jw)lap = 20l0g ~
Phase:

¢(w) =2H(jw) = —grad = —9(0°
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Example:

We plot the Bode plot for the Integrator using the bode function in MathScript:

b LabVIEW MathScript

File Edit View Operate Tools Window Help
Qutput \Window | Variables | Script ‘ History ‘
£ Plot 1 @ J'D [M'\Wovk\Lab\Lab Work\MathScript Lab\SDIutiDns\Cude\‘
File Items Tools Help —
% Define Transfer Function ~
Bode Plots K=1; b |
Magnitude num=[K]
40 den=[1,0]
He=t(num,den)
20-|
% Bode Plot
bode{H)
0- subplot({1,1,1)
Qrit
subplot(2,1,1)
20+ arid
-40- —— O Nt - R
0,01 0,1 1 10 100
g
=
o
@ Phase
&
-80
82,5
85—
-87,5-
92,5
95|
97,5
-100- [ R | R R L SR
0,01 0,1 1 10 100
Frequency (radjs)
2 b
‘Q.Ofﬁ 1de Line: 4, Column: 9

[End of Example]

7.4.3 Derivator

The transfer function for an Derivator is as follows:
Where
K is the gain

The mathematical expressions for A(w) and ¢(w) is as follows:

Gain:
A(w) = |H(jjw)| = Kw
orin dB:
|H(jw)|as = 20logKw
Phase:

¢(w) =2H(jw) = +grad = +490°

Example:
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We plot the Bode plot for the Derivator using the bode function in MathScript:

P LabVIEW MathScript

File Edt Yiew Operate Tools Window Help
¥ plot 1 Variables | Script | History |
0]
Fle Items Took Help — (E)()( ] ()| :iworkiLabiLab WorkiMtathScript LablSolutions|Codet |
Bode Plats % Define Transfer Function PN
Magnitude E::\L[K, 0]
0 den=1]
20~ H=tf(num,den)
% Bode Plot
bode(H)
07 subplot{1,1,1)
Qric
20— subplot(2,1,1)
arid
-40- oy o g o g o
0,01 0,1 1 10 100
3
=
B rhese
= 100
97,5
95—
92,5
87,5
85-|
82,5
80—, [ Y] P [ A R [ Y
0,01 0,1 1 10 100
Frequency (radjs)
\ 3 g
‘9.0?3 Tde Line: 3, Column: 10
[End of Example]
7.4.4 1. Order system
The transfer function for a 1.order system is as follows:
H(s) = ——
Ts+1

Where
K is the gain
T is the Time constant

The mathematical expressions for A(w) and ¢(w) is as follows:

A(w) = |[H(jw)| = YT

¢(w) = £H(jw) = —arctan (wT)

Example:

We plot the Bode plot for the 1.order system using the bode function in MathScript:
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P LabVIEW MathScript

File Edit YView Operate Tools Window Help
Output Window | Veriables | Seript | History |
(3 b =
Plot 1 [E]E] kE) ‘M:\WDrk\Lab\Lab WarkiMathScript LablSolutionsiCode! \
Bl Ltems Tooks Help % Define Transfer Function -~
Bode Plots =l
Magnitude :\J"l‘=[K]
) den=[T, 1]
107 Hetf{um, den)
20|
% Bode Plot
<17 bode(H)
-40- su_bplnt(l,l,l)
grid
50| subplot(2,1,1)
60— arid
T I 1[I 111 1 1 111 St M MRS L
0,001 0,01 0,1 1 10 100 1E+3
o
s
»
@ Phase
=
e o
20~
_40-]
60~
80|
-100-, R R I A T T] O R A R R AT R A AR R ITTY
0,001 0,01 0,1 1 10 100 1E+3
Frequency (radjs)
v
‘9.0?3 de Line: 5, Column: 10

[End of Example]

7.4.5 2. Order system

The transfer function for a 2.order system is as follows:

Hs) = Kw,y? B K
s T 52+ 2{wgs + wg? _(i
Wo

2 s
) +20—+1
Wo

Where
K is the gain
{ zetais the relative damping factor

wylrad/s] is the undamped resonance frequency.

Example:

We plot the Bode plot for the 2.order system using the bode function in MathScript:
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b LabVIEW MathScript [- [B]x]
Fle Edt Vew Operste ook Window Help
Output Window variobles | Seript | istory |
B Plot 1 =
EEX (E5)(6) (] (2] ptworkiLabiLab WorkiMathscrpt LabSolutionsiCodet |
File Items Tools Help
% Define Transfer Function -
Bode Plots wr=1; |
Magnitud dr=0.1;
lagnitude Hi=sys_order2(wr,dr)
20
10-| wr=1;
dr=05;
He=sys_order2(r,dr)
10
wr=1;
20| dr=1;
Ha=sys_orderz{r, dr)
a0
-40-,
0,1 % Bode Plot
. bode(H1,Hz,H3)
£ subplot(1,1,1)
g arid
#  Phase subplot(2,1,1)
£ aid
5]
=i
-
-100
125+
-150-]
-175
-200-, . \ . b 5 i
01 { 10
Frequency (rads)
T &
D e || [Lne: 18, Column 13

[End of Example]

7.4.6 Zero part (Norwegian: “Nullpunktsledd”)

The transfer function for a Zero part system is as follows:

[H(s) = K(Ts + 1)|

Where
K is the gain
T is the Time constant

The mathematical expressions for A(w) and ¢(w) is as follows:

Gain:

A(w) = |Hjw)| = Ky (wT)? + 1
orin dB:

|H(j)las = 20logKy/(@T)? + 1
Phase:

¢(w) = £H(jw) = +arctan (wT)

7.4.7 Time delay (Norwegian: “Tidsforsinkelse”)

The transfer function for a Time Delay is as follows:
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H(s) = Ke™

Where
K is the gain
T is the time-delay

The mathematical expressions for A(w) and ¢(w) is as follows:

Gain:
A(w) = |H(jw)| = K
Phase:
¢(w) =tH(jw) = —wT rad = —wr%degrees
Note!

2m rad = 360°

mwrad = 180°

Example:

We plot the Bode plot for the Time delay using the bode function in MathScript:

P LabVIEW MathScript

File Edit View Operate Tools Window Help
B Plot 1 E] Variables | Seript | History |
File Items Tools Help @]@E} J'D ‘M:\Work\Lab\Lab ‘WorkiMathScript Lab\Squtions\Code\‘
Bode Plots %Time Delay ~
Magnitude % Define Transfer Function b
15 K=1;
delay=1;
0,5-
s=tf('s");
HI=tF(K);
1] delay=2;
H=set{H1, inputdelay’,delay);
0,5
% Bode Plot
g bode(H)
1 o T oy g
0,01 0,1 1 10 100 ;‘,’ibpl"t("l“)
=3 subplot{z,1,1)
5 arid
o
& Phase
&
0
2E+3 |
4E+3 |
BE+3 |
8E+3 |
1E+4 -
1,2E+4 -, A R [ R [ A R R A Y
0,01 0,1 1 10 100
Frequency (radjs)
v L]
‘9 o de Line: 9, Column: 1

[End of Example]
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Analysis

8.1 Introduction

Here are some important transfer functions to determine the stability of a feedback system. Below
we see a typical feedback system.

r e ) u
() »| Controller s

Process
[

Sensors |=
e ——

The Loop transfer function L(s) (Norwegian: “Slgyfetransferfunksjonen”) is defined as follows:

|L(s) = HCHpHm|

Where

H_ is the Controller transfer function

H,, is the Process transfer function

H,, isthe Measurement (sensor) transfer function

Note! Another notation for L is H,

The Tracking transfer function T(s) (Norwegian: “Fglgeforholdet”) is defined as follows:

y(s)  HHpHp,  L(s) —1-5()

T =5 =17 H.HyHy, 1+ L(s)

The Tracking Property (Norwegian: “fglgeegenskaper”) is good if the tracking function T has value
equal to or close to 1:
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IT| =~ 1

The Sensitivity transfer function S(s) (Norwegian: “Sensitivitetsfunksjonen/avviksforholdet”) is
defined as follows:

e(s) _
r(s) 1+ L(s)

S(s) = =1-T(s)

The Compensation Property is good if the sensitivity function S has a small value close to zero:
S| = 0or |S| « 1

Note!

L(s) 1

1+L(s)+1+L(s) !

T(s)+ S(s) =

Frequency Response Analysis of the Tracking Property:

From the equations above we find:

The Tracking Property (Norwegian: “fglgeegenskaper”) is good if:
ILGw)| » 1

The Tracking Property (Norwegian: “fglgeegenskaper”) is poor if:

ILw)| « 1

Bandwidths w,, w,., W, (see the sketch below)
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[ JoX ) Figure 5
File Edit View Insert Tools Desktop Window Help

DEde M AA0U9EA-3 0E @

Bode Diagram

Magnitude (dB)
'\
|
\
|

Frequency (rad/s)

w, —crossover-frequency — the frequency where the gain of the Loop transfer function L(jw) has

the value:

1=0dB

w; —the frequency where the gain of the Tracking function T(jw) has the value:

1
—~0.71 = =3dB
V2

wg -the frequency where the gain of the Sensitivity transfer function S(jw) has the value:

1
—~0.29 = —11dB
V2

8.2 MathScript

MathScript has several functions for frequency response analysis:

Function Description Example
tf Creates system model in transfer function form. You also can igum: H] " .
B 2 p en=[1, ’ ;
use this function to state-space models to transfer function S = &2 (o, den)
form.
poles Returns the locations of the closed-loop poles of a system >num=[1]
>den=[1,1]
model. >H=tf (num, den)
>poles (H)
tfinfo Returns information about a transfer function system model. >[num, den, delay, Ts] =
tfinfo (SysInTF)
series Connects two system models in series to produce a model >Hseries = series(Hl,H2)
SysSer with input and output connections you specify
feedback Connects two system models together to produce a closed-loop ~ >SysClosed = feedback (Sysin_1,

model using negative or positive feedback connections

SysIn 2)
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bode Creates the Bode magnitude and Bode phase plots of a system >2um: S] "1]
. . . >den=[2, ;
model. You also can use this function to return the magnitude SH - tf (num, den)
and phase values of a model at frequencies you specify. If you >bode (H)
do not specify an output, this function creates a plot.
Creates the Bode magnitude plot of a system model. If you do g, wewt] = =eeEme(Fysin)
bOdemag ) g ) P ) Y v >[mag, wout] = bodemag (SysIn, [wmin
not specify an output, this function creates a plot. it
>[mag, wout] = bodemag (SysIn,
wlist)
margin Calculates and/or plots the smallest gain and phase margins of a z‘;um = H] S
. . . . . en = ’ ’
single-input single-output (SISO) system model. The gain margin SH = tf (num, den)
indicates where the frequency response crosses at 0 decibels. margin (H)

The phase margin indicates where the frequency response
crosses -180 degrees. Use the margins function to return all gain
and phase margins of a SISO model.
margins Calculates all gain and phase margins of a single-input >lgm, gm, pmf, pm] = margins(H)
single-output (SISO) system model. The gain margins indicate
where the frequency response crosses at 0 decibels. The phase
margins indicate where the frequency response crosses -180
degrees. Use the margin function to return only the smallest
gain and phase margins of a SISO model.

Example:
Given the following system:

Process transfer function:

—TSs

K
s

Where K = %, where K, = 0,556, A = 13,4, ¢ = 145 and 7 = 250

Measurement (sensor) transfer function:

H, =K,
Where Km = 6,67 %/m.
Controller transfer function (Pl Controller):
K
H. =K, + =
¢ p TiS

Set Kp =1,5 og Ti = 1000 sec.

We shall find the Loop transfer function (s) , Sensitivity transfer function S(s), Tracking transfer
function T(s) using the series and feedback functions in MathScript.

MathScript Code:

%Calculating control system transfer functions:

L=series (Hc,series (Hp,Hs)); %Calculating loop tranfer function
T=feedback (L,1); %Calculating tracking transfer function
S=1-T; %Calculating sensitivity transfer function
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We plot the Bode plot for L, T and S and find the Bandwidths w¢, w, wg:

MathScript Code:

bodemag (L, T,S), grid %$Plots maginitude of L, T, and S in Bode diagram

Bode plot (Magnitude only) of L, T and S:

B Plot 1

File Items Tools Help

Graph Bode-Magnitude Plots
40

.20 -)

-40-

Magnitude (dB)

-60 -

.30 -]

-100-

=il = N e a——n
1E-6 1E=5 0,0001 0,001 0,01 0,1 1 10 100
Frequency (radjs)

We find the stability margins (GM, PM) of the system (L(s)):

margin (L), grid %Plotting L and stability margins and crossover
frequencies in Bode diagram

Bode plot with the stability margins (GM, PM) marked on the plot:
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B Plot 3

File Items Tools Help

Graph 1

EBEX

Magnitude (dB)
3
1

w0 (ul) W
Llodell | || AL
Gain Margin ’7

PM Crossover |1

-100-
-120-, 1 1 1 1 1 1
100u im 10m 100m 1 10 100
Frequency (radfs)
Graph 2
0] w0 {u0) W
-200-] BTHdeg T[T
o Phase Margin [
& -400-
Y GM Crossover [~
8 -600-
a
-800-
-1k=, 1 | 1 1 1 |
100u 1m 10m 100m 1 10 100
Frequency (radfs)

[End of Example]
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9Stability Analysis in the
Frequency Domain

9.1 Introduction

Gain Margin (GM) and Phase Margin (PM) are important design criteria for analysis of feedback
control systems.

A dynamic system has one of the following stability properties:

e Asymptotically stable system
e Marginally stable system
e Unstable system

The Gain Margin — GM (AK) is how much the loop gain can increase before the system become
unstable.

The Phase Margin - PM (@) is how much the phase lag function of the loop can be reduced before
the loop becomes unstable.

Gain
e
0dB - GM - Log w
Phase
PM -
-180deg \ 180 - Log w

Where:
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75 Stability Analysis in the Frequency Domain

®  wqgo (gain margin frequency - gmf) is the gain margin frequency/frequencies, in
radians/second. A gain margin frequency indicates where the model phase crosses -180
degrees.

e GM (AK) is the gain margin(s) of the system.

e w, (phase margin frequency - pmf) returns the phase margin frequency/frequencies, in
radians/second. A phase margin frequency indicates where the model magnitude crosses 0
decibels.

e PM (@) is the phase margin(s) of the system.

Note! wqg9 and w. are called the crossover-frequencies
The definitions are as follows:

Gain Crossover-frequency - w,:

| IL(w)| = 1= 0dB]

Phase Crossover-frequency - wqg :

| 2L(jw1g0) = —180°]

Gain Margin - GM (AK):

_ 1
[LGw1go)l

GM
or:
GM [dB] = —|L(jw1go)| [dB]
Phase margin PM (¢):
PM =180° + 2L(jw,)

We have that:

o  Asymptotically stable system: w, < w1gg |
i o« Marginally stable system: w,. = w1gg |
i o Unstable system: w, > wqgg 2

9.2 MathScript

MathScript has several functions for stability analysis:

Function Description Example
bode Creates the Bode magnitude and Bode phase plots of a system igum: %‘2” "1]
. - g en=lz, 7
model. You also can use this function to return the magnitude S = (2 (e, Sl
and phase values of a model at frequencies you specify. If you >bode (H)
do not specify an output, this function creates a plot.
bodemag Creates the Bode magnitude plot of a system model. If you do >[mag, wout] = bodemag(SysiIn)
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margin

not specify an output, this function creates a plot.

Calculates and/or plots the smallest gain and phase margins of a
single-input single-output (SISO) system model. The gain margin
indicates where the frequency response crosses at 0 decibels.
The phase margin indicates where the frequency response
crosses -180 degrees. Use the margins function to return all gain
and phase margins of a SISO model.

>[mag, wout] = bodemag (SysIn, [wmin
wmax])

>[mag, wout] = bodemag (SysIn,
wlist)

>num = [1]

>den = [1, 5, 6]

>H = tf (num, den)
margin (H)

margins

Calculates all gain and phase margins of a single-input >lgmf, gm,

single-output (SISO) system model. The gain margins indicate
where the frequency response crosses at 0 decibels. The phase
margins indicate where the frequency response crosses -180
degrees. Use the margin function to return only the smallest
gain and phase margins of a SISO model.

= margins (H)

Example:

Given the following system:

H(S) =

1

s(s+ 1)2

We will find the crossover-frequencies for the system using MathScript. We will also find also the
gain margins and phase margins for the system.

We get:

! LabVIEW MathScript
File Edit View Operate Tools Window Help

Output Window

phase_data =

=

-91.146
-101.42
-112.62
-143.13

oooo
(L S =]

10 -258.58
100 -268.85

1.9972

0.99931
puf =

21.386
rn =

0.68233

[>

(<

l Variables ‘ Script ‘ History ‘

CEX

Command Window

[

9.0f3

Idle

[EE] l M:\WorkiLabiLab WorkiMathScript LablSolutions\Code!\ Task 7y |

% Transfer function

num=[1];

den1=[1,0];

denz=[1,1]

den3=[1,1]

den = conv({den1,conv(den2,den3));
H = tfi{num, den)

% Bode Plot

bode{H)

% Margins and Phases
wilist=[0.01, 0.1, 0.2, 0.5, 1, 10, 100];

[mag, phase,w] = bode(H, wlist);
magdB=20*log10{magq); %convert to dB
% [maq, phase,w] = bode{H);

mag_data = [w, magdB]
phase_data = [w, phase]

% Crossover Frequenc

[amf, gm, pmf, pm] = margins{H)
margin{H)

~

[<

Line: 6, Column: 1
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Below we see the Bode diagram with the crossover-frequency and the gain margin and phase margin
for the system plotted in:

File Items Tools Help
w0 {ud) N
L e b ey g B T By odg ATt
[vu)
% 50~ Gain Margin |
E PM Crossaver T+
€ -100-
m
=
-150 -
-200-, | 1 1 |
100m 1 10 100 1k
Frequency (rad/s)
w0 {u0) [K
-180*k deg PR
@ Phase Margin V
0.2 (72 s ey s poyey pmps g S S * P ey Sy S S S N i ) S e P S (s S R I 4 QS I S py S| =,
E" GM Crassover "™
2
o
=275, 1 1 1 1
100m 1 10 100 1k
Frequency (rad/s)
[End of Example]
Example:
Given the following system:
s+1
H(s) = —5———
(s) s2—s+3

- The system is unstable and Frequency Response gives meaning only for stable systems.

Note! The frequency response of a system is defined as the steady-state response of the system to
a sinusoidal input signal.

The Bode diagram for unstable systems don’t show what happens with the sinusoidal signal of a
given frequency when the system input is transferred through the system because it never reach
steady state.

We see that the system is unstable because some of the coefficients in the denominator polynomial
s? — s+ 3 are negative.
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We confirm this by some simulations and finding the poles for the system:

poles (H)
pzgraph (H)

This gives:

B! Piot 1 EEX

File Edit View Project Operate Tools Window Help

Graph Pole-Zero Map

1,8
Im £3

ol /W

1,4~
1,2

1-
0,8-
0,6-
0,4~
0,2-] Re

0
0,2
0,4+
0,6
0,8-

-1-

1,2
-1,4- \
-1,6-

-L,8-) | 1 | 1 1 1 1 1 1
-1 -08 06 04 -02 0 0,2 0,4 0,6 0,8 1

Imaginary

X

- We see the poles are complex conjugate and that they lies in the right half-plane.

+ 1.65831

0.5
0.5 1.65831

We plot the step response for the transfer function using the step function:

num=[1,1];
den=[1,-1,3];
H=tf (num, den) ;
t=[0:0.01:10]
step (H, t) ;

4

This gives the following plot:
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B/ Plot 1

Graph

X

[
Output Window

File Edit View Project Operate Tools Window Help

Step Response

70-

60~

S0

40-

30-

20~

Amplitude

-10-

-20-

-30-

-40 -

=50

1 1 1 1 1 1 1 1 1
1,5 2 25 3 35 4 45 5 55 6
Time (s)

- We see the system is unstable

[End of Example]
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Appendix A — MathScript
Functions

Basic Functions

Here are some descriptions for the most used basic MathScript functions.

Function Description Example
help MathScript displays the help information available >>help
help Display help about a specific function >>help plot
<function>
who, whos who lists in alphabetical order all variables in the currently active :":°
whos
workspace.
clear Clear variables and functions from memory. >>clear
>>clear x
. a . >>x=[1 2 ; 3 4];
size Size of arrays, matrices Cmiee(n)
L h of >>x=[1:1:10];
length ength of a vector >>length (x)
format Set output format
i Display text or arra >>A=[1 2;3 4];
d|Sp play Y >>disp (A)
. . . >>x=[1:1:101];
plot This function is used to create a plot >>plot (x)
>>y=sin(x) ;
>>plot (x,vy)
clc Clear the Command window >>cls
rand Creates a random number, vector or matrix —
>>rand(2,1)
max Find the largest number in a vector >>x=[1:1:10]
>>max (x)
min Find the smallest number in a vector >rr=(iaizil]
>>min (x)
A | >>x=[1:1:10]
mean verage or mean value menn o)
Standard deviation >>x=[1:1:10]
std >>std (x)
Function Description Example
plot Generates a plot. plot(y) plots the columns of y against the i;( - ioigi 01:1];
indexes of the columns. Splot (X, ¥)
. fi : >>figure
figure Create a new figure window Ctioure (1)
subplot Create subplots in a Figure. subplot(m,n,p) or subplot(mnp), >>subplot(2,2,1)

breaks the Figure window into an m-by-n matrix of small axes,
selects the p-th axes for the current plot. The axes are counted
along the top row of the Figure window, then the second row,

etc.
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grid Creates grid lines in a plot. iigig .
“grid on” adds major grid lines to the current plot. S>grid off
“grid off” removes major and minor grid lines from the current
plot.

axis Control axis scaling and appearance. “axis([xmin xmax ymin ::’;: (CE;“EM xmax ymin ymax])
ymax])” sets the limits for the x- and y-axis of the current axes. SSernile om

title Add title to current plot >>title('this is a title’)
title('string')

xlabel Add xlabel to current plot »> Eletael (Meime)
xlabel('string')

ylabel Add ylabel to current plot >> ylabel ('temperature')
ylabel('string')

legend Creates a legend in the corner (or at a specified position) of the =~ >> legend('temperature')
plot

hold Freezes the current plot, so that additional plots can be overlaid =~ >>hold on

>>hold off

For more information about the plots function, type “help plots”.

Functions used for Control and Simulation

Function Description Example
plot Generates a plot. plot(y) plots the columns of y against the j - }50121 Diglig
indexes of the columns. >plot X, 1)
tf Creates system model in transfer function form. You also can igum: H] ;1 .
. . . en=[1, 1, ;
use this function to state-space models to transfer function SH = t£(num, den)
form.
. | R >num=[1]
poles Returns the locations of the closed-loop poles of a system ey
model. >H=t£ (num, den)
>poles (H)
tfinfo Returns information about a transfer function system model. >[num, den, delay, Ts] =
tfinfo (SysInTF)
step Creates a step response plot of the system model. You also can igum: H 1]1" =
- . en=[1,-1,3];
use this function to return the step response of the model SH=t£ (num, den) ;

outputs. If the model is in state-space form, you also can use this >t=[0:0.01:10];
function to return the step response of the model states. This PO (R E) §
function assumes the initial model states are zero. If you do not

specify an output, this function creates a plot.

Isim Creates the linear simulation plot of a system model. This ii s[g;%liig]i*t) :
function calculates the output of a system model when a set of S1sim(SysTn, u, ©)
inputs excite the model, using discrete simulation. If you do not
specify an output, this function creates a plot.

Sys_orderl Constructs the components of a first-order system model based iiaz i" .
on a gain, time constant, and delay that you specify. Youcanuse ., _ sys'_orderl (X, tau)
this function to create either a state-space model or a transfer
function model, depending on the output parameters you

specify.
Sys_order2 Constructs the components of a second-order system model iii B 265
based on a damping ratio and natural frequency you specify. You S, gen; - sys_order2 (wn, dr)
can use this function to create either a state-space model or a iSysTF = tf(num, den) i .
:/?L:\zfr;eercfitlynctlon model, depending on the output parameters >s[,§ési’ :c'ssD(]A, ;?sc—,“;er (v,
damp Returns the damping ratios and natural frequencies of the poles ~ >[dr, wn, p] = damp(SysIn)
of a system model.
pid Constructs a proportional-integral-derivative (PID) controller ?;i - 325
model in either parallel, series, or academic form. Refer to the >Sysoutﬁ . pid (Kc, Ti,
LabVIEW Control Design User Manual for information about 'academic') ;
these three forms.
conv Computes the convolution of two vectors or matrices. ig; B E’ i] S

>C = conv (Cl, C2)
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series
feedback

SS

ssinfo

pade

bode

bodemag

margin

margins

Connects two system models in series to produce a model
SysSer with input and output connections you specify

Connects two system models together to produce a closed-loop
model using negative or positive feedback connections
Constructs a model in state-space form. You also can use this
function to convert transfer function models to state-space
form.

Returns information about a state-space system model.

Incorporates time delays into a system model using the Pade
approximation method, which converts all residuals. You must
specify the delay using the set function. You also can use this
function to calculate coefficients of numerator and denominator
polynomial functions with a specified delay.

Creates the Bode magnitude and Bode phase plots of a system
model. You also can use this function to return the magnitude
and phase values of a model at frequencies you specify. If you
do not specify an output, this function creates a plot.

Creates the Bode magnitude plot of a system model. If you do
not specify an output, this function creates a plot.

Calculates and/or plots the smallest gain and phase margins of a
single-input single-output (SISO) system model. The gain margin
indicates where the frequency response crosses at 0 decibels.
The phase margin indicates where the frequency response
crosses -180 degrees. Use the margins function to return all gain
and phase margins of a SISO model.

Calculates all gain and phase margins of a single-input
single-output (SISO) system model. The gain margins indicate
where the frequency response crosses at 0 decibels. The phase
margins indicate where the frequency response crosses -180
degrees. Use the margin function to return only the smallest
gain and phase margins of a SISO model.

>Hseries = series (H1,H2)

>SysClosed = feedback (SysIn 1,
SysIn 2)

>A = eye (2)

>B = [0; 1]

>C = B'

>SysOutSs = ss (A, B, C)
>A = [1, 1; -1, 2]

>B = [1, 2]

>C = [2, 1]

>D = 0

>SysInSS = ss(A, B, C, D)

>[A, B, C, D, Ts] = ssinfo (SysInSs)
>[num, den] = pade(delay, order)
>[A, B, C, D] = pade(delay, order)

>num=[4];
>den=[2, 11];

>H = tf (num, den)
>bode (H)

>[mag, wout] = bodemag (SysIn)
>[mag, wout] = bodemag (SysIn, [wmin
wmax])

>[mag, wout] = bodemag(SysIn,
wlist)

>num = [1]

>den = [1, 5, 6]

>H = tf(num, den)

margin (H)

>[gmf, gm, pmf, pm] = margins (H)

For more details about these functions, type “help cdt” to get an overview of all the functions used

for Control Design and Simulation. For detailed help about one specific function, type “help

<function_name>".
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